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INTRODUCTION 
 
The rapid development of information technologies has 
dramatically changed the acquisition, manipulation and 
transmission of knowledge. They considerably increase the 
number of opportunities for its procurement by means of 
information exchange, communication and collaboration by 
overcoming time and space constraints. Universities’ main links 
in the knowledge acquisition are strongly influenced by these 
factors. Their functions for the creation, preservation, 
integration, teaching and application of knowledge find a new 
interpretation [1]. New forms and models of teaching, such as 
virtual structures for laboratories, classes and universities, are 
an alternative of the traditional education methods [2]. 
 
Approaches in building virtual labs are discussed elsewhere  
[6-10]. It is essential that platform independence is ensured in 
order to obtain access to remote controlled labs and 
overcoming license restrictions [9]. Although the question of 
didactical opportunities is not bound to the technical 
realisation, it remains open for discussion [1][6]. The aims of 
the present work are firstly to discuss the disputed issue 
concerning the didactic value of new Internet technologies and 
to share the authors’ views in this respect. Secondly, a new 
systematic approach for building remote labs is proposed to 
emphasise the platform independence of virtual instruments and 
their synchronisation on the physical layer. 
 
DIDACTICAL ISSUE 
 
As with every new technology, some problems arose 
concerning the realisation and implementation of virtual labs in 
education, such as an adequate, well mobilised, compact, 
economically justified and didactic learning environment [3]. 
The question concerning the didactical value usually remains 
separate without a clear answer. 

The powerful features underlying new technologies give some 
authors reason to consider that traditional teaching can be 
completely replaced by these new forms, which utilise multiple 
levels of teaching materials structuring as hyper pages with 
connections, the use of simulators and multimedia techniques 
that help students to learn effectively and experiment remotely 
without time and place constraints [1][2]. It is thought that the 
student’s isolation, typical for the virtual remote teaching, may 
be overcome primarily by technical means in contemporary 
Internet technologies, including online conferences, seminars, 
discussion groups, opportunities for computer-based quizzes 
and instant feedback. 
 
A precise and formalised analysis is needed to properly place 
new didactical meanings in such a way that they stimulate the 
learner to gain knowledge according to specific actions. It is 
considered that the approach of actors, as proposed by 
Ahmavaara, is appropriate for these purposes [4]. This 
approach is based on a confrontation between human abilities 
and technical structures, as it is shown that the latter are limited 
in their reactions and interactions with the surrounding 
environment. 
 
Firstly, a human thinks about the realisation of aims before 
undertaking the corresponding actions. The aims of these 
predetermined actions are dependent on his/her subjective 
values and knowledge about the situation. Except when 
expressing individual free will and having personal goals to 
achieve, a person still complies with objective laws and, in this 
sense, is a causal system. Combining the two approaches 
distinguishes a human as an actor-system. 
 
In a real situation, an actor does not act on his/her own. For 
example, when a student-actor is experimenting in a traditional 
lab, he/she interacts immediately with a teacher-actor. From the 
traditional educational point of view, it would commonly be 

How and why to build and use virtual laboratories 
 

George S. Georgiev†, Hubert Roth‡, Silvia Stefanova†, Georgi T. Georgiev†, Emil Stoyanov†  
& Otto Rösch‡ 

 
Rousse University, Rousse, Bulgaria† 

University of Siegen, Siegen, Germany‡ 
 
 

ABSTRACT: This article presents the authors’ experiences in building virtual laboratories and provides discussions on issues of 
importance and relevance with regard to the pedagogy, software and equipment utilised. The authors comment on the potential 
laboratory structures from the point of view of the Distributed Laboratories’ general purposes, which include: the cost effectiveness 
and platform independence, time and space constraints, as well as the balance between the traditional and virtual forms of teaching. 
The structure and the organisation of the laboratory are proposed and special attention is being given to the physical instruments, the 
possibility for their platform independent control from the client-student and their synchronisation in a multitask environment such as 
Windows. 
 
 
 

 
 



  

 192 

necessary to investigate the interaction of N actors forming a 
general actor-system that jointly states and acts can be 
presented as follows: 
 

NsNs ffffxxxx ∧∧== .....),,...,,( 2121                 (1) 
 

Even though each actor has as a precondition his own values of 
states 

i
Bβ , his actions are added to the total crossings of the 

effects in conceivable world’s states X (see Figure 1):  
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Figure 1: Actor’s interaction. 
 
It is shown in [4] that, in order to generate a transition from one 
state to another, 
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characteristic of the dynamic systems, a system function 
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This unifies the efforts of the single actors through merging 
their joint intents, ie: 
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This represents the joint requirement for all genuinely self-
steering machines to which the person belongs. 
 
A more detailed view of the component structure of (4) shows 
that the generated new states 

ix  in the common actor-system 
depend equally as much on the exits-intents 

iy  of the 
individuals, an expression of their own subjective goals, as on 
the exits-intents 

jy ( ji ≠ ) of other actors-participants. Apart 
from this, the use of different entrances to technical systems 
separates their internal structure from the external environment. 
They perceive the external influences through receptors 
connected to the external entrances. Their internal structure 
determined as preliminary remains untouched and encapsulated 
inside the system [10]. This can be generalised as follows: 
 
• The teaching process, comprising an actor-student and an 

actor-teacher, develops as an action in an actor-system and 
has its system characteristics. 

• Knowledge transmission between the actors (participants 
in the actor-system) is carried out as a sequence of actions 
along the chain: 
knowledge  ⇒   cognitive beliefs/values  ⇒   norms 

by means of the teacher’s values delivered to the student 
under the operation of merging their intents function 

),,( jiyyS ji
t ≠ . This is a bilateral process and is 

individual from the perspective of the final results 
according to the component record: 

))),(()),((()( jixTxTStx j
t
ji

t
i

t
ii ≠= ττ ττ . 

Mutual knowledge delivery does not finish the same for all 
participants. It has an original character and is based on 

knowledge generation, which is one of the essential 
functions of universities [2]. 

• The technical systems that separate themselves from the 
surrounding environment by means of the external 
entrances cannot completely deliver their behaviour to the 
environment’s elements-actors. If they are inappropriate 
mediators between the participants-actors in the teaching 
actor-system, then they will reduce its effectiveness for the 
knowledge delivery and generation. 

• Humans can explore the environment better than technical 
systems, perceiving it as a behaviour of co-actors. Humans 
react on their intents throughout the whole time of 
interaction, rearranging internal cognitive systems (2). 
This is a continuous process in time and space. 

 
All this does not detract from the usefulness of virtual labs. It is 
clear from Figure 1 that the intents of the actors operating in a 
joint actor-system during the teaching process can be merged 
only if the consequences 

i
Cβ ,

j
Cβ  are crossed; this being a 

continuous time process (2)(3). Increasing numbers of students 
and limited resources if time and space are the main limitations 
in today’s universities. Interaction within the teacher-student 
system can be vastly improved. The teaching process can  
gain the necessary level of intensification through virtual labs, 
where students can learn without the above-mentioned 
constraints. 
 
JAVA COMMUNICATION VIRTUAL LAB STRUCTURE  
 
Platform independence is an important condition for clients-
students to obtain wide access to the remote lab client-server 
modules in Java. Their integrative implementation is a powerful 
method for dialogue and remote procedures; this is why they 
provide the basis of the proposed communication structure (see 
Figure 2). The communication network ports are shown, while 
the initiator of the connection is the component marked with 
local port, which is the client. The server is the acceptor and it 
provides the remote port. Network connections are numerated. 
 

 
 

Figure 2: Java communication structure. 
 
The sequence of the client’s access to the lab resources is as 
follows. The central server (JBOSS application server: 
http://www.jboss.org) provides the Web server (Jakarta Tomcat 
3.2.x: http://jakarta.apache.org) to which the browser is 
connected (step 1). Registration, authorisation and information 
downloads are generated by the JSP engine pages. An internal 
verification to the database server is realised through executing 
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an SQL query using AccountEJB (step 2). The AccountEJB 
component estimates the validity of the user identification and 
grants an access to the available laboratory applets. After being 
downloaded, the desired applet connects to the JBOSS central 
server (step 3) using the associated proxy EJB component. Proxy 
EJBs are used only as receiver-transmitters of requests for remote 
procedures execution on the basis of earlier established 
authorisation (step 4). These execute remote procedures of 
components located at the laboratory servers (also JBOSS EJB 
Server) that control the devices under test. After finishing the 
procedure, the laboratory server connects to the database server 
(step 5) to write the operation results. The final results then 
return to the calling applet through the proxy EJB. 
 
Locking control and availability of the remotely controlled 
device is done in the proxy EJBs and the laboratory server. 
Such a structure allows for parallel processing: 
 
• Steps 1 and 2 can be processed by multiple users 

simultaneously. 
• Step 3 to 5 can be processed simultaneously by as many 

users as the laboratory server allows, usually the number 
of attached devices to one laboratory server. 

• Any of the server components of the system (central 
server, lab server, database server) may grant access to 
various users at the same time (eg SQL cl/s connected to 
the database server) but authorisation is required. 

 
The general model of the software-controlled device is shown 
in Figure 3. Controlling unit functions are the main commands 
of the controlling system (DAQ system) whereas the device 
functions are in the core of the model: they are specific for the 
system and usually sequence the functions or procedures to the 
controlling unit. The Graphical User Interface (GUI) is the 
visual representation of the device. The GUI calls only the 
device model functions and cannot directly call the controlling 
unit functions. 
 

 

Figure 3: General model of the software-controlled device. 
 
In order to apply this model to the client-server model, it is 
necessary to separate the parts dealing with user interaction 
(GUI) and the controlling unit so the client to be responsible 
for graphic representation and remote device functions calling. 
This means the device model has to be implemented as client 
and server parts.  
 
The client executes remote procedures that are specific for the 
Device Under Test (DUT). Functions are located on a server 
(central, laboratory or node). It does not matter through how 
many nodes the system call will pass; it finally reaches the 
laboratory server. In turn, it provides the required system calls 
as remote functions that are executable by means of an 
RMI/IIOP mechanism. Generally, all remote functions are 
encapsulated in EJBs, which call native functions containing 
code that controls the DUT (see Figure 4). 
 
Figure 4 shows that the client consists of the GUI and its part of 
the device functions (device model). The server is the 
controlling unit functions module and it also has part of the 

device model. Access to the device is arranged as follows: Java 
is capable of executing native functions through Java Native 
Interface (JNI). The JNI serves as the glue between Java and 
native applications, with functions written in C language, and 
the device can be accessed directly or by calling driver 
procedures. In this case, access is organised by driver functions 
to make the system more flexible and standard. 
 

 
Figure 4: Remote procedures execution. 

 
Figure 5 shows a detailed view of the layers through which a 
call to the system method passes. Every EJB has functions 
specific for the device it represents (device model). These 
functions should be transformed into a sequence of basic 
commands understandable by the controlling unit (or 
measurement system, marked as CSI). In this case, devices are 
controlled by the CSI and every EJB has class CSIDLLAccess, 
which allows the core CSI functions (din, aot, etc) to be 
executed. By means of these classes, it is possible to model and 
control any device connected to the CSI. CSYDLLAccess makes 
JNI call to a library containing the wrapping code of the CSI 
driver, manipulating it directly. To complete this discussion, 
the physical instrumentation layer should be looked at. 
 

Note: 
EJB: gives methods executable from the net.  
CSIDLLAccess.java: mirror of the library accessing the 
device driver (acts as a Java bridge to the native 
functions). 
Java Native Interface: integrated in the JVM, translates 
Java to C data types and object calls. 
CSI.DLL: library compiled with JNI support, its 
functions access the device driver. 
CSIDRV.VXD: device driver – system level. 
CSIDAQSystem: the controlling unit (physical layer). 

 
Figure 5: Detailed view of the layers and their descriptions. 

 
PHYSICAL LAYER 
 
Implementing real-time processing in multitasking environ-
ments such as Windows is very difficult. This is because system 
resources are granted to each running task in time slices (about 
1 sµ ) according to the task’s priorities. A task can raise its 
priority but that would impede the performance of other tasks. 
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Even running at highest priority, a task is not guaranteed  
to hold the system resources, most importantly the CPU, all  
the time. Another problem affecting measurement is that  
multi-tasking environments tasks are heavily protected  
from each other so that one task can not access memory  
that may belong to any other task. Intel processor-based  
PCs protection is implemented by assigning two very different 
privilege levels to each piece of running code: system  
(or supervisor) level and user (application) level. The  
latter level cannot access IO ports (this is especially true  
for Windows NT), nor process interrupt requests. So, any  
code that accesses hardware directly should work at the system 
level. 
 
To make matters worse, code running at the system level 
cannot directly call user level code. Even the simplest 
measurement of voltage using an ADC takes some time to 
complete. Most implementations either generate an interrupt 
request or raise a flag to indicate that measurement has been 
completed. One way of synchronising is to just wait in the 
system level code until the flag raises, or an interrupt request is 
generated (in this case there is really no difference between 
these two approaches), as illustrated in Figure 6. 
 

 
Figure 6: The simplest way of dealing with synchronisation. 

 
This scenario suffers from two major problems. On the one 
hand, Windows’ task scheduler still periodically gives a slice of 
time from the CPU to the measurement task, even if it is only 
checking a flag. This would impede performance of all other 
tasks in the system, especially if the priority of the measuring 
task is above normal. On the other hand, there is no guarantee 
that the reaction to the finishing of the measurement will be 
prompt. In fact the conversion may end while another task 
occupies the CPU; then Windows may yield the CPU to still 
another task. In general, several time slices may pass before the 
measurement task becomes aware of the event that conversion 
has been completed. 
 
There are at least two ways to deal with these problems. The 
performance impediment problem can be dealt with entirely, 
while the second problem can be reduced to a delay of no more 
than one time slice. One solution is to use Windows’ message 
passing mechanism, as shown in Figure 7. 
 

 
Figure 7: Synchronisation through message passing. 

In this case, control is returned to the main program loop as 
soon as the conversion starts. The main loop continues running; 
if there is no user activity. The task will again do nothing, but 
this time it will not be given any resources by the Windows’ 
task scheduler. This is guaranteed by the very way the main 
program loop is organised in each Windows program. All 
Windows programs are necessarily event-driven; if, for a given 
time interval, there are no events concerning a particular 
program (task), it is placed in an idle state without any 
performance penalties to other tasks. 
 
Another solution is to use a synchronisation object (see Figure 
8). A semaphore is a typical example: Windows offers other 
objects to accommodate the needs of each particular 
synchronisation scenario. In this case, an event is more 
appropriate. Here, again, control is returned to the main 
program loop immediately. However, this time, the main 
program has to create a second thread, waiting for the event to 
become signalled. This waiting is again performance penalty 
free due to the way Windows uses synchronisation objects. 
This implementation uses the approach with message passing 
because it is nearer to natural event-driven programming 
techniques. The reaction to the message can easily be 
implemented as a method in a class, so the implementation of 
an object oriented approach is also not a problem. 
 

 
Figure 8: Synchronisation through an event. 

 
CONCLUSIONS 
 
Virtual technical and technological meanings and systems can 
implement and support only a part of the basic functions of the 
universities connected to the preservation and delivery of 
knowledge. 
 
The idea is for universities to turn into knowledge servers [1]. 
This is based completely on new information technologies and 
limits the interaction between the actors (participants in a 
common teaching system). It also delivers the opportunity for 
the main university functions to be realised. The 
implementation of the preservation, delivery, generation and 
application of knowledge requires a balanced and reasonable 
combination of the two teaching forms: traditional and virtual. 
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The Global Journal of Engineering Education 

 
The UICEE’s Global Journal of Engineering Education (GJEE) was launched by the Director-
General of UNESCO, Dr Frederico Mayor at the April meeting of the UNESCO International 
Committee on Engineering Education (ICEE), held at UNESCO headquarters in Paris, France, in 
1997. 
 
The GJEE is set to become a benchmark for journals of engineering education. It is edited by the 
UICEE Director, Prof. Zenon J. Pudlowski, and has an impressive advisory board, comprising 
close to 30 distinguished academics from around the world. 
 
The Journal is a further step in the Centre’s quest to fulfil its commission of human resources 
development within engineering through engineering education, in this instance, by providing 
both a global forum for debate on, and research and development into, issues of importance to 
engineering education, and a vehicle for the global transfer of such discourse. 
 
In the first five years of the Journal’s existence, 220 papers over 1,670 pages have been 
published, including award-winning papers from UICEE conferences held around the world. 
Papers have tackled issues of multimedia in engineering education, international collaboration, 
women in engineering education, curriculum development, the future of engineering education, 
the World Wide Web and the value of international experience, to name just a few. Other 
examples include: Vol.3, No.1 was dedicated to papers on quality issues in engineering 
education; Vol.3, No.3 focused on papers given at the 1st Conference on Life-Long Learning for 
Engineers; Vol.4, No.2 centred on the German Network of Engineering Education and was the 
first issue published entirely in the German language; Vol.4, No.3 centred on the achievements of 
the 2nd Global Congress on Engineering Education, held in Wismar, Germany; while Vol.5, 
No.2, had a more regional focus on Taiwan. 
 
The GJEE is available to members of the UICEE at an individual member rate of $A100 p.a., or 
to libraries at a rate of $A200 p.a. (nominally two issues per year, although each volume has 
included an extra, complementary issue). For further details, contact the UICEE at: UICEE, 
Faculty of Engineering Monash University, Clayton, Victoria 3800, Australia. Tel: +61 3 990-
54977 Fax: +61 3 990-51547, or visit the UICEE Website at: 

http://www.eng.monash.edu.au/uicee 

 
 


