
World Transactions on Engineering and Technology Education 2002 UICEE
Vol.1, No.2, 2002

 191

INTRODUCTION

The rapid development of information technologies has
dramatically changed the acquisition, manipulation and
transmission of knowledge. They considerably increase the
number of opportunities for its procurement by means of
information exchange, communication and collaboration by
overcoming time and space constraints. Universities’ main links
in the knowledge acquisition are strongly influenced by these
factors. Their functions for the creation, preservation,
integration, teaching and application of knowledge find a new
interpretation [1]. New forms and models of teaching, such as
virtual structures for laboratories, classes and universities, are
an alternative of the traditional education methods [2].

Approaches in building virtual labs are discussed elsewhere
[6-10]. It is essential that platform independence is ensured in
order to obtain access to remote controlled labs and
overcoming license restrictions [9]. Although the question of
didactical opportunities is not bound to the technical
realisation, it remains open for discussion [1][6]. The aims of
the present work are firstly to discuss the disputed issue
concerning the didactic value of new Internet technologies and
to share the authors’ views in this respect. Secondly, a new
systematic approach for building remote labs is proposed to
emphasise the platform independence of virtual instruments and
their synchronisation on the physical layer.

DIDACTICAL ISSUE

As with every new technology, some problems arose
concerning the realisation and implementation of virtual labs in
education, such as an adequate, well mobilised, compact,
economically justified and didactic learning environment [3].
The question concerning the didactical value usually remains
separate without a clear answer.

The powerful features underlying new technologies give some
authors reason to consider that traditional teaching can be
completely replaced by these new forms, which utilise multiple
levels of teaching materials structuring as hyper pages with
connections, the use of simulators and multimedia techniques
that help students to learn effectively and experiment remotely
without time and place constraints [1][2]. It is thought that the
student’s isolation, typical for the virtual remote teaching, may
be overcome primarily by technical means in contemporary
Internet technologies, including online conferences, seminars,
discussion groups, opportunities for computer-based quizzes
and instant feedback.

A precise and formalised analysis is needed to properly place
new didactical meanings in such a way that they stimulate the
learner to gain knowledge according to specific actions. It is
considered that the approach of actors, as proposed by
Ahmavaara, is appropriate for these purposes [4]. This
approach is based on a confrontation between human abilities
and technical structures, as it is shown that the latter are limited
in their reactions and interactions with the surrounding
environment.

Firstly, a human thinks about the realisation of aims before
undertaking the corresponding actions. The aims of these
predetermined actions are dependent on his/her subjective
values and knowledge about the situation. Except when
expressing individual free will and having personal goals to
achieve, a person still complies with objective laws and, in this
sense, is a causal system. Combining the two approaches
distinguishes a human as an actor-system.

In a real situation, an actor does not act on his/her own. For
example, when a student-actor is experimenting in a traditional
lab, he/she interacts immediately with a teacher-actor. From the
traditional educational point of view, it would commonly be

How and why to build and use virtual laboratories

George S. Georgiev†, Hubert Roth‡, Silvia Stefanova†, Georgi T. Georgiev†, Emil Stoyanov†
& Otto Rösch‡

Rousse University, Rousse, Bulgaria†

University of Siegen, Siegen, Germany‡

ABSTRACT: This article presents the authors’ experiences in building virtual laboratories and provides discussions on issues of
importance and relevance with regard to the pedagogy, software and equipment utilised. The authors comment on the potential
laboratory structures from the point of view of the Distributed Laboratories’ general purposes, which include: the cost effectiveness
and platform independence, time and space constraints, as well as the balance between the traditional and virtual forms of teaching.
The structure and the organisation of the laboratory are proposed and special attention is being given to the physical instruments, the
possibility for their platform independent control from the client-student and their synchronisation in a multitask environment such as
Windows.

 192

necessary to investigate the interaction of N actors forming a
general actor-system that jointly states and acts can be
presented as follows:

NsNs ffffxxxx ∧∧==),,...,,(2121 (1)

Even though each actor has as a precondition his own values of
states

i
Bβ , his actions are added to the total crossings of the

effects in conceivable world’s states X (see Figure 1):

)()....()()(
21

tCtCtCtC
Nββββ ∩∩= (2)

Figure 1: Actor’s interaction.

It is shown in [4] that, in order to generate a transition from one
state to another,

ssN XXfff →∧∧ :....21
- a basic

characteristic of the dynamic systems, a system function

),(βtS can be defined such as:

))(()...,((),((()()(2211 ττττ τττ
N

t
N

ttt
ss xTxTxTStxx =→ (3)

This unifies the efforts of the single actors through merging
their joint intents, ie:

))(()...,((),((()()(2211 ττττ τττ
N

t
N

ttt
ss xTxTxTStxx =→ (4)

This represents the joint requirement for all genuinely self-
steering machines to which the person belongs.

A more detailed view of the component structure of (4) shows
that the generated new states

ix in the common actor-system
depend equally as much on the exits-intents

iy of the
individuals, an expression of their own subjective goals, as on
the exits-intents

jy (ji ≠) of other actors-participants. Apart
from this, the use of different entrances to technical systems
separates their internal structure from the external environment.
They perceive the external influences through receptors
connected to the external entrances. Their internal structure
determined as preliminary remains untouched and encapsulated
inside the system [10]. This can be generalised as follows:

• The teaching process, comprising an actor-student and an

actor-teacher, develops as an action in an actor-system and
has its system characteristics.

• Knowledge transmission between the actors (participants
in the actor-system) is carried out as a sequence of actions
along the chain:
knowledge ⇒ cognitive beliefs/values ⇒ norms

by means of the teacher’s values delivered to the student
under the operation of merging their intents function

),,(jiyyS ji
t ≠ . This is a bilateral process and is

individual from the perspective of the final results
according to the component record:

))),(()),((()(jixTxTStx j
t
ji

t
i

t
ii ≠= ττ ττ .

Mutual knowledge delivery does not finish the same for all
participants. It has an original character and is based on

knowledge generation, which is one of the essential
functions of universities [2].

• The technical systems that separate themselves from the
surrounding environment by means of the external
entrances cannot completely deliver their behaviour to the
environment’s elements-actors. If they are inappropriate
mediators between the participants-actors in the teaching
actor-system, then they will reduce its effectiveness for the
knowledge delivery and generation.

• Humans can explore the environment better than technical
systems, perceiving it as a behaviour of co-actors. Humans
react on their intents throughout the whole time of
interaction, rearranging internal cognitive systems (2).
This is a continuous process in time and space.

All this does not detract from the usefulness of virtual labs. It is
clear from Figure 1 that the intents of the actors operating in a
joint actor-system during the teaching process can be merged
only if the consequences

i
Cβ ,

j
Cβ are crossed; this being a

continuous time process (2)(3). Increasing numbers of students
and limited resources if time and space are the main limitations
in today’s universities. Interaction within the teacher-student
system can be vastly improved. The teaching process can
gain the necessary level of intensification through virtual labs,
where students can learn without the above-mentioned
constraints.

JAVA COMMUNICATION VIRTUAL LAB STRUCTURE

Platform independence is an important condition for clients-
students to obtain wide access to the remote lab client-server
modules in Java. Their integrative implementation is a powerful
method for dialogue and remote procedures; this is why they
provide the basis of the proposed communication structure (see
Figure 2). The communication network ports are shown, while
the initiator of the connection is the component marked with
local port, which is the client. The server is the acceptor and it
provides the remote port. Network connections are numerated.

Figure 2: Java communication structure.

The sequence of the client’s access to the lab resources is as
follows. The central server (JBOSS application server:
http://www.jboss.org) provides the Web server (Jakarta Tomcat
3.2.x: http://jakarta.apache.org) to which the browser is
connected (step 1). Registration, authorisation and information
downloads are generated by the JSP engine pages. An internal
verification to the database server is realised through executing

 193

an SQL query using AccountEJB (step 2). The AccountEJB
component estimates the validity of the user identification and
grants an access to the available laboratory applets. After being
downloaded, the desired applet connects to the JBOSS central
server (step 3) using the associated proxy EJB component. Proxy
EJBs are used only as receiver-transmitters of requests for remote
procedures execution on the basis of earlier established
authorisation (step 4). These execute remote procedures of
components located at the laboratory servers (also JBOSS EJB
Server) that control the devices under test. After finishing the
procedure, the laboratory server connects to the database server
(step 5) to write the operation results. The final results then
return to the calling applet through the proxy EJB.

Locking control and availability of the remotely controlled
device is done in the proxy EJBs and the laboratory server.
Such a structure allows for parallel processing:

• Steps 1 and 2 can be processed by multiple users

simultaneously.
• Step 3 to 5 can be processed simultaneously by as many

users as the laboratory server allows, usually the number
of attached devices to one laboratory server.

• Any of the server components of the system (central
server, lab server, database server) may grant access to
various users at the same time (eg SQL cl/s connected to
the database server) but authorisation is required.

The general model of the software-controlled device is shown
in Figure 3. Controlling unit functions are the main commands
of the controlling system (DAQ system) whereas the device
functions are in the core of the model: they are specific for the
system and usually sequence the functions or procedures to the
controlling unit. The Graphical User Interface (GUI) is the
visual representation of the device. The GUI calls only the
device model functions and cannot directly call the controlling
unit functions.

Figure 3: General model of the software-controlled device.

In order to apply this model to the client-server model, it is
necessary to separate the parts dealing with user interaction
(GUI) and the controlling unit so the client to be responsible
for graphic representation and remote device functions calling.
This means the device model has to be implemented as client
and server parts.

The client executes remote procedures that are specific for the
Device Under Test (DUT). Functions are located on a server
(central, laboratory or node). It does not matter through how
many nodes the system call will pass; it finally reaches the
laboratory server. In turn, it provides the required system calls
as remote functions that are executable by means of an
RMI/IIOP mechanism. Generally, all remote functions are
encapsulated in EJBs, which call native functions containing
code that controls the DUT (see Figure 4).

Figure 4 shows that the client consists of the GUI and its part of
the device functions (device model). The server is the
controlling unit functions module and it also has part of the

device model. Access to the device is arranged as follows: Java
is capable of executing native functions through Java Native
Interface (JNI). The JNI serves as the glue between Java and
native applications, with functions written in C language, and
the device can be accessed directly or by calling driver
procedures. In this case, access is organised by driver functions
to make the system more flexible and standard.

Figure 4: Remote procedures execution.

Figure 5 shows a detailed view of the layers through which a
call to the system method passes. Every EJB has functions
specific for the device it represents (device model). These
functions should be transformed into a sequence of basic
commands understandable by the controlling unit (or
measurement system, marked as CSI). In this case, devices are
controlled by the CSI and every EJB has class CSIDLLAccess,
which allows the core CSI functions (din, aot, etc) to be
executed. By means of these classes, it is possible to model and
control any device connected to the CSI. CSYDLLAccess makes
JNI call to a library containing the wrapping code of the CSI
driver, manipulating it directly. To complete this discussion,
the physical instrumentation layer should be looked at.

Note:
EJB: gives methods executable from the net.
CSIDLLAccess.java: mirror of the library accessing the
device driver (acts as a Java bridge to the native
functions).
Java Native Interface: integrated in the JVM, translates
Java to C data types and object calls.
CSI.DLL: library compiled with JNI support, its
functions access the device driver.
CSIDRV.VXD: device driver – system level.
CSIDAQSystem: the controlling unit (physical layer).

Figure 5: Detailed view of the layers and their descriptions.

PHYSICAL LAYER

Implementing real-time processing in multitasking environ-
ments such as Windows is very difficult. This is because system
resources are granted to each running task in time slices (about
1 sµ) according to the task’s priorities. A task can raise its
priority but that would impede the performance of other tasks.

 194

Even running at highest priority, a task is not guaranteed
to hold the system resources, most importantly the CPU, all
the time. Another problem affecting measurement is that
multi-tasking environments tasks are heavily protected
from each other so that one task can not access memory
that may belong to any other task. Intel processor-based
PCs protection is implemented by assigning two very different
privilege levels to each piece of running code: system
(or supervisor) level and user (application) level. The
latter level cannot access IO ports (this is especially true
for Windows NT), nor process interrupt requests. So, any
code that accesses hardware directly should work at the system
level.

To make matters worse, code running at the system level
cannot directly call user level code. Even the simplest
measurement of voltage using an ADC takes some time to
complete. Most implementations either generate an interrupt
request or raise a flag to indicate that measurement has been
completed. One way of synchronising is to just wait in the
system level code until the flag raises, or an interrupt request is
generated (in this case there is really no difference between
these two approaches), as illustrated in Figure 6.

Figure 6: The simplest way of dealing with synchronisation.

This scenario suffers from two major problems. On the one
hand, Windows’ task scheduler still periodically gives a slice of
time from the CPU to the measurement task, even if it is only
checking a flag. This would impede performance of all other
tasks in the system, especially if the priority of the measuring
task is above normal. On the other hand, there is no guarantee
that the reaction to the finishing of the measurement will be
prompt. In fact the conversion may end while another task
occupies the CPU; then Windows may yield the CPU to still
another task. In general, several time slices may pass before the
measurement task becomes aware of the event that conversion
has been completed.

There are at least two ways to deal with these problems. The
performance impediment problem can be dealt with entirely,
while the second problem can be reduced to a delay of no more
than one time slice. One solution is to use Windows’ message
passing mechanism, as shown in Figure 7.

Figure 7: Synchronisation through message passing.

In this case, control is returned to the main program loop as
soon as the conversion starts. The main loop continues running;
if there is no user activity. The task will again do nothing, but
this time it will not be given any resources by the Windows’
task scheduler. This is guaranteed by the very way the main
program loop is organised in each Windows program. All
Windows programs are necessarily event-driven; if, for a given
time interval, there are no events concerning a particular
program (task), it is placed in an idle state without any
performance penalties to other tasks.

Another solution is to use a synchronisation object (see Figure
8). A semaphore is a typical example: Windows offers other
objects to accommodate the needs of each particular
synchronisation scenario. In this case, an event is more
appropriate. Here, again, control is returned to the main
program loop immediately. However, this time, the main
program has to create a second thread, waiting for the event to
become signalled. This waiting is again performance penalty
free due to the way Windows uses synchronisation objects.
This implementation uses the approach with message passing
because it is nearer to natural event-driven programming
techniques. The reaction to the message can easily be
implemented as a method in a class, so the implementation of
an object oriented approach is also not a problem.

Figure 8: Synchronisation through an event.

CONCLUSIONS

Virtual technical and technological meanings and systems can
implement and support only a part of the basic functions of the
universities connected to the preservation and delivery of
knowledge.

The idea is for universities to turn into knowledge servers [1].
This is based completely on new information technologies and
limits the interaction between the actors (participants in a
common teaching system). It also delivers the opportunity for
the main university functions to be realised. The
implementation of the preservation, delivery, generation and
application of knowledge requires a balanced and reasonable
combination of the two teaching forms: traditional and virtual.

REFERENCES

1. Duderstadt, J.J., The future of the university in age of

knowledge. J. of Asynchronous Learning Networks, 1, 2,
78-88 (1997).

2. Bourne, J.R. et al, Learning network in engineering
education. J. of Asynchronous Learning Networks, 1, 1,
18-23 (1997).

3. Hanna, D., Higher education in era of digital competion:
emerging organizational models. J. of Asynchronous
Learning Networks, 2, 1 (1998).

 195

4. Ahmavaara, A., The impossibility of genuinely self-
steering machines: a fundamental theorem on actor-
systems. Cybernetics, 10, 113-121 (1981).

5. Mesarovic, M.D. and Takahara, Y., General System
Theory: Mathematical Foundations. New York: Academic
Press (1975).

6. Benetazzo, L., et al, A Web-based distributed virtual
educational laboratory. IEEE Trans. on Instrumentation
and Measurement, 49, 2, 349-356 (2000).

7. Arpaia, P. et al, A measurement laboratory on geographic
network for remote test control. IEEE Trans. on

Instrumentation and Measurement, 49, 5, 992-996
(2000).

8. Ko, C.B. et al, A large-scale Web-based virtual
oscilloscope laboratory experiment. Engng. Science and
Educ. J., April, 69-76 (2000).

9. Fortino, G., et al, Distributed measurement patterns based
on Java and Web tools. IEEE Trans. on Instrumentation
and Measurement, 47, 7, 624-628 (1997).

10. Rodriguez, F. et al, A remote laboratory for teaching
mobile robots. Proc. 1st IFAC Conf., Telematics Appli-
cations in Automation and Robotics, TA, 307-311 (2001).

 196

The Global Journal of Engineering Education

The UICEE’s Global Journal of Engineering Education (GJEE) was launched by the Director-
General of UNESCO, Dr Frederico Mayor at the April meeting of the UNESCO International
Committee on Engineering Education (ICEE), held at UNESCO headquarters in Paris, France, in
1997.

The GJEE is set to become a benchmark for journals of engineering education. It is edited by the
UICEE Director, Prof. Zenon J. Pudlowski, and has an impressive advisory board, comprising
close to 30 distinguished academics from around the world.

The Journal is a further step in the Centre’s quest to fulfil its commission of human resources
development within engineering through engineering education, in this instance, by providing
both a global forum for debate on, and research and development into, issues of importance to
engineering education, and a vehicle for the global transfer of such discourse.

In the first five years of the Journal’s existence, 220 papers over 1,670 pages have been
published, including award-winning papers from UICEE conferences held around the world.
Papers have tackled issues of multimedia in engineering education, international collaboration,
women in engineering education, curriculum development, the future of engineering education,
the World Wide Web and the value of international experience, to name just a few. Other
examples include: Vol.3, No.1 was dedicated to papers on quality issues in engineering
education; Vol.3, No.3 focused on papers given at the 1st Conference on Life-Long Learning for
Engineers; Vol.4, No.2 centred on the German Network of Engineering Education and was the
first issue published entirely in the German language; Vol.4, No.3 centred on the achievements of
the 2nd Global Congress on Engineering Education, held in Wismar, Germany; while Vol.5,
No.2, had a more regional focus on Taiwan.

The GJEE is available to members of the UICEE at an individual member rate of $A100 p.a., or
to libraries at a rate of $A200 p.a. (nominally two issues per year, although each volume has
included an extra, complementary issue). For further details, contact the UICEE at: UICEE,
Faculty of Engineering Monash University, Clayton, Victoria 3800, Australia. Tel: +61 3 990-
54977 Fax: +61 3 990-51547, or visit the UICEE Website at:

http://www.eng.monash.edu.au/uicee

